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ABSTRACT  —  Autonomous drones have broad applications 
including but not limited to: defense, search and rescue, 
firefighting, and package delivery. Despite the different 
applications that these drones may perform, they have 
similar underlying components and software architectures. 
This paper provides an overview on the processes and 
methodologies used to implement an autonomous aerial 
drone, also known as a UAV, for our senior design project. 
This project identifies known obstacles and attempts to 
maneuver around them in specific patterns. Moreover, the 
project incorporates sound localization in order to identify 
the approximate location of an audio source.  
Index Terms  —  Aircraft Navigation, Autonomous Systems, 
Image Recognition, Machine Learning, Sensor Systems. 

I. INTRODUCTION 

The purpose of this project is to create an autonomous 
aerial drone in a multidisciplinary team composed of 
electrical/computer engineering students as well as 
mechanical/aerospace engineering students. The original 
objectives of this project were provided by our project 
sponsor, Lockheed Martin. The main objective was to 
create an autonomous drone to navigate through an 
obstacle course consisting of a ring, a pylon, a double-
pylon, and an acoustic waypoint.. This obstacle course 
would have been set up indoors at Lockheed’s indoor lab. 
Our team’s drone’s would have competed against other 
drones designed by other teams to determine which drone 
could navigate the most obstacles autonomously through 
the course. In addition to navigating the obstacles, the 
drone was also to avoid being brought down by a drone 
“mine” designed by another team to stop the drone from 
completing the course. The demonstration was initially 
planned to be a competition against the other drone teams, 
with the goal of accumulating the most points. As a part of 
this challenge, we were allocated a strict budget of $1100 
for the final build price of our drone and an additional 
$550 for prototyping. 

After the pandemic broke out and it was determined the 
drone competition was not going to occur as planned, the 
project requirements were reduced to demonstrating 
autonomous around two of the obstacles: a ring and a 
pylon. This report details our progress to accomplishing 
these requirements. 

II. HARDWARE COMPONENTS 

The completed drone project consists of various 
individual components used to realize the finished 
product. This section provides an overview on the major 
components selected, including a brief analysis on the 
decision making process. 

A. Flight Controller 

The flight controller is responsible for controlling the 
movement of the drone by adjusting the power delivered 
to each motor. Flight controllers can measure the level and 
speed of the drone, and use that information to correct the 
orientation of the drone during flight. The selected flight 
controller for this project is the Readytosky Pixhawk. The 
reason why this flight controller was selected was because 
in addition to the basic gyroscope and accelerometer 
sensors that all flight controllers have, this one also 
includes a barometer, magnetometer, and inertial 
measurement unit (IMU) which provides more accurate 
and consistent flight performance. Additionally, the 
Pixhawk is 32-bit, has I2C and SPI interfaces, and has the 
ability to run either the PX4 or ArduPilot flight stack. We 
utilized the expandability of this platform to test the drone 
using both a PX4Flow Optical Flow Sensor and a 
HereFlow Optical Flow/Lidar sensor. 

B. Camera 

For our camera, we were looking at a few different 
options. One option was to use a single, basic RGB 
camera. This would provide us video data from which we 
could feed into an object detection algorithm in which to 
determine the location of the objects. However, we 
determined with this kind of set up it would be difficult to 
determine the distance to most objects. A solution that we 
came up with was to use two RGB cameras and use the 
relative difference in pixels between the two images to 
determine the distance to objects on the computer. The 
downside to this approach is the large amount of 
processing power it would take to determine distances on 
a computer that is already running an computationally 
expensive object detection algorithm. 

Therefore, instead of using two RGB cameras, we 
decided to use an Intel Realsense D435 depth camera. 
This camera uses two infrared cameras to produce a depth 
image that is calculated on a processor located in the 
camera. The depth image along with an RGB image from 



an RGB camera also located on the D435 is sent to the 
drone computer via USB. The drone computer then uses 
the RGB image for object recognition while the depth 
image was intended to be used for determining the 
distance to the object. Figure 1 shows a 3D mapped image 
processed by the camera. 

 

 
Figure 1: 3D mapped image of pylons and rings viewed 

from the positive z-axis 

C. Microphone 

To detect the acoustic waypoint we utilized the Mic 
Array v2.0, which uses four ST MP34DT01TR-M digital 
microphones to triangulate sound and filter out different 
sounds into up to six channels. Sound triangulation is done 
with time of arrival for a sound to each of the four 
microphones, resulting in an angle which can be used to 
determine the location of the acoustic waypoint. Volume 
intensity can be used to determine the distance from the 
drone to the acoustic waypoint.  

Sound filtering is done with the onboard XMOS XVF-
3000 chip, with the use of Acoustic Echo Cancelation 
(AEC) which is designed to remove echoes, reverberation, 
and unwanted added. AEC utilizes an adaptive filter 
which samples the direct audio with the echoed audio to 
result in one clean audio reading, which is then further 
filtered with residual echo suppression and noise reduction 
(Figure 2). 

The onboard XMOS XVF-3000 chip also has a 
configuration file which allows for adjusted parameters 
for how many channels that can be filtered, as well as the 
frequency range that will be recorded by the microphones. 
These parameters can be adjusted because the  Mic Array 
v2.0 utilizes digital microphones which are compatible 
with a more advanced stereo sound processor codec such 
as the XMOS.  

 

Figure 2: Microphone array acoustic echo cancelation 

D. Companion Computer 

The computer of the drone is used to control the main 
functions of the drone. These functions include image 
recognition on frames received from the camera, sending 
commands to the flight controller, and sending video to 
the ground station. When choosing a computer to integrate 
into our system, we were looking for a computer that was 
powerful enough to run all of these systems 
simultaneously in addition to being relatively light and 
consuming relatively little power.  

At first we considered using a Raspberry Pi 4 Model B. 
This computer has a 4-core 1.5 GHz processor with 4GB 
of memory. It is very light at 46 grams and uses up to 5W 
at max power. However, this computer had the downsides 
of having a GPU that is not well documented, likely not 
very powerful, and unable to take advantage of specific 
libraries designed for object detection models. 

We instead decided to use a Nvidia Jetson Nano Dev 
Kit. This computer has a 4-core 1.42GHz processor with 
4GB of memory. It is slightly heavier at 116 grams and 
uses up to 10W at max power, but it uses an Nvidia 
CUDA core GPU that is more broadly compatible with 
software that can run object detection algorithms. We 
believed this combination of CPU and GPU would 
provide enough computational power to run the object 
detection algorithm along with any other software we 
were running. We would also be able to experiment with 
Nvidia specific libraries for deep learning and computer 
vision.  For this reason, we selected the Jetson Nano over 
the Raspberry Pi 4B. 

E. Microcontroller 

A microcontroller was selected to manage four laterally 
mounted ultrasonic range sensors, the HC-SR04. Utilizing 
a separate microcontroller (as opposed to incorporating 
this subsystem with the companion computer) allowed us 
to increase the modularity of the system. This highly 
modular design allowed us to increase the reliability of the 
subsystem, and allowed us to easily examine various 
design iterations. The chosen architecture was based on 
the Atmel ATMEGA328-PU processor which utilizes an 



8-bit 20 MHz design. This integrated circuit (IC) is 
sufficient in driving the ultrasonic range sensors and 
relaying distance information to the companion computer 
via UART. Finally, this architecture was chosen due to its 
available documentation/online resources, as well as ease 
of use via the Arduino development platform. 

F.  Wi-Fi Module 

The drone computer requires Wi-Fi capability in order 
to communicate with a ground control computer to send 
video data. The Jetson Nano does not come with a Wi-Fi 
module built in, so we decided to buy a Geekworm USB 
Wi-Fi adapter. We decided to go with a USB Wi-Fi 
module rather than a Wi-Fi card because a Wi-Fi card 
would have required installation of a separate antenna in 
order to operate properly. The USB module came with a 
small antenna and allowed for quicker integration with the 
rest of the system. 

The Geekworm USB Wi-Fi module was specifically 
chosen because it uses USB 3.0 which is on the Jetson 
Nano, allowing for data speed of up to 4,800 Mbps, which 
is ten times faster than USB 2.0 ports. A USB Wi-Fi 
module with a larger antenna allows for a larger reception 
range, and the Geekworm USB Wi-Fi module uses a 5dBi 
RP-SMA which has an effective range of up to 1000 feet. 

G. Battery 

  A Lithium Polymer (LiPo)  battery will be used as the 
power source for the drone. It will be connected to the 
power distribution board (PDB), which will then distribute 
power to the rest of the components. The power 
requirements of all the components of the drone’s system 
is listed in Table 1.. 

Table 1: Expected Power Draw of System Components 

 
  The battery used was a “Venom Fly” 14.8 volt, 3200 
mAh, 4 cell, 330g LiPo battery. The battery was chosen 
based on two primary specifications; its total output 
voltage and weight.  

  The “Dynamite Reaction” and the Tattu batteries were 
taken into consideration. The “Dynamite Reaction” was a 
5000 mAh, 11.1 volt, 3 cell, 204g battery; this battery’s 
higher capacity and lighter weight were good 
specifications to consider. However, the output voltage of 

the battery was too low to provide adequate power of the 
drone’s systems.  

  The “Tattu” was a 10000 mAh, 22.2 volt, 6 cell, 1400g 
battery; this battery’s higher capacity and output voltage 
were good specifications to consider. However, the total 
weight of the battery was too high to provide adequate 
thrust for the  drone’s takeoff of maneuverability.  

H. Universal Battery Eliminator Circuit 

  To power the Jetson Nano using power from the drone’s 
power distribution board, the ZTW 6Amp universal 
battery eliminator circuit (UBEC) was used. The Jetson 
Nano is rated to take a DC power supply of 5V and 
4Amps, and despite providing 5V and 5.5Amps via the 
ZTW 6Amp UBEC, it did not provide an adequate amount 
of power when the Jetson was running the computer 
vision algorithm, resulting in a shutdown of the CPU. 

III. System Overview 

This section will outline the physical connectivity and 
operation of the complete system.  

A. Architecture 

Figure 3 below provides a high level overview of how 
the components are connected in this project. In the figure, 
it can be seen the battery is connected to PDB, which is 
connected to the ESC and motor set, the flight controller, 
the CPU, the camera, the microphone, and the 
microcontroller and sensor set.  
 

 
Figure 3: System component connection overview 

 
As seen above, the drone has two primary systems: the 

flight controller and the Jetson Nano (companion 
computer). The flight controller manages all the flight 
controls of the drone, while the companion computer 
manages all the image and sound recognition, processing, 
and navigation instructions of the drone. The companion 
computer connects to the flight controller in place of a 
radio receiver, mimicking the signals used to fly a drone. 
It also provides the communication interface to control the 



drone remotely. As the Jetson Nano is able to connect to a 
Wi-Fi network through the wireless adapter, a user is able 
to SSH into the drone and execute flight commands. 
Moreover, the user is able to launch the video feed and 
stream it over the network to a remote ground control 
station (in this case, a laptop). 

B. Operation 

Connecting the battery to the drone powers all of the 
system components immediately, however the computer 
takes about 45 seconds to boot up. Once the computer has 
booted, and the Jetson Nano connects to the known access 
point, a user can remotely SSH into the computer over the 
same network. Once logged in via SSH, the user can 
launch the software for autonomous functionality. To 
manually fly the drone, the remote control receiver must 
be inserted into the flight controller, replacing the Jetson 
Nano. 

IV. SOFTWARE DESIGN AND INTEGRATION 

The software for the project heavily revolves around the 
Robot Operating System (ROS). Figure 4 (below) outlines 
how the various software nodes interact with one another. 
 

 
Figure 4: Software system diagram using ROS 

A. Object Detection Model and Training 

Object detection is used in our system to determine the 
location of obstacles compared to the drone. The decision 
of the type of model mainly focused on speed as extreme 
accuracy is not necessary to navigate through hoops and 
around pylons. Using data for models running on the 
Jetson Nano [4], we decided to go with a Single Shot 
Detector (SSD) using a Mobilenet V2 to identify objects 

for its speed. It would allow us to perform path corrections 
at a rate at at least 30 frames per second. 

This model was trained using one of our personal 
computers with a GTX 980ti GPU using Tensorflow. 
Tensorflow was chosen due to its theoretical compatibility 
with the Jetson hardware. The images used for training 
were collected by us during our test sessions in the 
Lockheed Martin drone lab and outside, and these images 
were labeled using labelImg [1]. The configuration of our 
training was based on that Tensorflow researchers used for 
training an SSD for the COCO dataset [2]. 

Once the model was trained, the frozen model was 
transferred to the Jetson where the model was converted 
into a UFF file, a form usable by TensorRT. TensorRT 
was then used to optimize the model for use with the GPU 
located on the Jetson Nano. This process was difficult due 
to issues in compatibility between particular versions of 
Tensorflow and TensorRT. In this case, Tensorflow 14.0 
was creating nodes in the graph that were unable to be 
properly interpreted by our version of TensorRT. We were 
able to resolve these issues after finding a source detailing 
how these issues could be resolved [3]. 

B.  Robot Operating System 

The Robot Operating System (ROS) is a set of message 
passing protocols typically used with autonomous 
systems. ROS allows for integration of different systems 
by standardizing messages including the passing of 
images from the camera node to the image processing 
node. Nodes can be established for various functions such 
as packaging sensor data and device control instructions. 

We decided to go with ROS because of the large 
amount of resources that we could find a large amount of 
software that would allow for the quick integration of 
various components of our system.  

C. Controller Node 

The controller node is a ROS node designed to receive 
information from the object detection node and use that 
information to send commands to the flight controller via 
MAVROS. The controller node contains a control loop 
that switches between a set of modes. The main two 
modes are Autonomous Navigation (AutoNav) and 
Autonomous Maneuver (AutoMan). 

While in AutoNav mode, the drone would attempt to 
navigate towards a spot in front of the obstacle. The drone 
does this using object data from the object detection node. 
Once the drone has navigated to a spot in front of the 
obstacle, the drone then switches into AutoMan mode. 
The drone then would attempt to navigate around the 
obstacle. In the case of rings, the drone would attempt to 
fly through them. In the case of pylons, the drone would 
make a loop around them. Once the drone has finished 



AutoMan mode, the drone would be put into AutoNav 
mode again to look for another obstacle. 

The drone would be able to be switched out of AutoNav 
and AutoMan modes by flicking a switch on the radio 
controller to throw the flight controller into a human 
operated mode. The drone computer will then notice the 
change in mode and stop sending commands to the flight 
controller. 

D. Camera Node 

The camera node we are using to interface with the Intel 
Realsense D435 is a node called realsense-ros created by 
Intel [5]. This node provides an RGB image and a depth 
image to the other nodes. 

E.  Object Detection Node 

The object detection ROS node is created by Nvidia 
employees called ros_deep_learning [5] that was edited by 
us in order to accept an RGB image from the camera as 
opposed to the BGR image that the program expects. The 
object detection node subscribes to the RGB image output 
by camera node. The node then takes our custom model in 
UFF format, converts it to a form to be used by TensorRT 
(if it hasn’t already from a previous run), and then uses 
that model to output bounding boxes of obstacles. These 
bounding boxes are labeled such that we can determine 
what kind of obstacle is detected. These bounding boxes 
would have been passed to the distance estimation node 
for use in determining distances to each object. 

F.  Distance Estimation Node 

The distance estimation ROS node would take an input 
of a depth image from the camera node and the bounding 
boxes of objects from the object detection node to 
estimate the distance to each obstacle in the field of view 
of the camera. The closest obstacle to the drone is then 
determined, and the bounding box for that obstacle and 
distance to that obstacle would then have been passed to 
the drone controller node for navigation. 

G.  Microcontroller Software 

The microcontroller software was written in embedded 
C, as available in the Arduino Integrated Development 
Environment. The microcontroller transmits sensor 
information over the Universal Asynchronous Receiver-
Transmitter (UART) interface. On the other side of the 
communication link, a ROS node on the companion 
computer can read the serial communication and publish 
the data as necessary. 

  

V. DRONE DESIGN 

The drone was customly designed by the 
mechanical/aerospace engineering members of our team 
with the purpose of creating a highly modular design. The 
benefit to creating our own frame is that it can evolve to 
meet the changing needs of our project. Designing our 
own drone was also cost effective and allowed the team to 
utilize the project budget on better components. In 
particular, the drone was 3D printed using PET-G with 
custom mounts to securely house our components. We 
were able to quickly reprint parts of the drone if we 
needed to accomodate a new component or replace any 
broken parts. A model of drone is shown below in Figure 
5: 

 

 
Figure 5: Custom design drone frame with components 

mounted 

VI. RESULTS 

Due to the pandemic canceling the trial runs at 
Lockheed Martin’s drone facility, the school being shut 
down and denying access to the senior design lab, and 
generally being unable to congregate with the entire team 
due to stay-at-home orders, the ability to complete this 
project as originally planned was severely impacted. We 
did our best to pull together what we could in these 
circumstances. 

A. Object Detection 

We were able to train an object recognition model and 
successfully execute it on the drone’s onboard computer. 
We created and utilized a database of approximately eight 
hundred images to create our model. We were able to 
correctly identify hoops and pylons. An example of this 
can be seen in Figure 6. As part of the project 
requirements, the object recognition system should be able 
to identify the type of obstacle detected, and the 
confidence level of the object detected, amongst other 
requirements. In figure 6, it can be seen the object 
recognition model was able to detect two types of 
obstacles; a ring and a single pylon. The ring was detected 



with a confidence level of 83 percent, and the pylon was 
detected with a confidence level of 75.7 percent. 

 
Figure 6: Object detection with confidence level 

In addition to the visual identification, we were able to 
extract numerical coordinates for the identified object with 
respect to the rest of the captured frame.  

B. Sound Triangulation 

Using the previously mentioned microphone array, we 
were able to identify the direction that a sound was 
playing from. Primarily, we were able to extract the angles 
of a sound source in reference to the zero position of the 
microphone. With this information, we could determine 
which direction the drone needed to navigate to in order to 
complete the acoustic waypoint obstacle as part of the 
competition. An example of the microphone data is shown 
in Figure 7. In the figure, the angle of the sound source 
from the drone’s current location can be seen. The angle is 
measured counterclockwise, taken from the horizontal 
front end of the drone. 

The sound that the microphones were set to listen to any 
sound above 180Hz. The XMOS could limit its sound 
cutoff range to 80Hz, 125Hz, and 180Hz. This was the 
closest number to Lockheed’s specification of close to 
500Hz for the sound emitted from the acoustic waypoint. 
The 180Hz limit was enough to permit sounds from a high 
frequency hand bell, and exclude lower frequency sounds 
such as voices when testing for the direction of arrival for 
high frequency sounds. The frequency of the sound from 
the drone’s propellers to where the mic array was placed 
underneath the drone, was below the 180Hz threshold. 

 
Figure 7: Angles of detected sound samples (with respect 

to a 0° starting position) 

C. Printed Circuit Board & Microcontroller 

We were able to design and prototype the PCB that 
would be able to manage the ultrasonic range sensors used 
for the measurements between the drone and potential 
obstacles. It is based on the Atmel ATMEGA328-PU 
integrated circuit and an Arduino Uno was used as the 
development board. While we originally wanted to 
incorporate a DC/DC power converter to serve as a 
voltage regulator for the various components in our 
system, the electronic speed controllers and motors draw 
upwards of 30A each. We were advised to instead use a 
power distribution board designed for drone applications, 
which we then utilized to power our components. The 
schematic for our circuit is shown in Figure 8. 

 

 
Figure 8: PCB schematic utilizing the Atmel 

ATMEGA328-PU 
 
We tested the sensor measurements and verified the 

ability to communicate data between the microcontroller 
and Jetson Nano over UART to exchange data, as seen in 
Figure 9. 

Though we were able to establish a proof of concept for 
this subsystem, we experienced unreliable performance 



when using the fabricated PCB that we designed. We 
believe that due to tracing errors, some signals were 
interfering with each other and causing poor performance 
in relaying information back to the drone’s companion 
computer. We would be able to confirm this hypothesis 
with the use of the university’s lab equipment. 

 

 
Figure 9: UART transmission of ultrasonic sensor data 

(measured in centimeters) 

D. Power System 

All of the drone’s components were powered through 
the onboard battery. The drone was originally designed to 
fly for at least 10 minutes on a full charge of a battery. 
However, during testing we discovered that our battery 
was only able to provide about 6 minutes of flight with all 
components attached. After discussions with our team, we 
discovered that the power draw from our motors was 
greater than that was what was expected. We decided to 
upgrade our battery to a 6000mAh, which is almost double 
what we had before. We also decided to upgrade to larger 
motors because the additional battery weight would have 
put significant strain on our current motors. However, we 
were unable to order these batteries due to the lack of 
access to sponsor funds because of the pandemic. 

During our testing with our drone computer connected 
to the battery, we noticed that we were having issues with 
the computer turning off automatically. When the drone 
was idle, we found that each component was stable and 
remained powered on. However, when we ran the 
computer vision algorithm, the CPU load would spike and 
the computer would shut off shortly thereafter. The power 
to the computer was being routed from the computer using 
a regulator rated for 5V at 6A. Since the computer is 
designed to run at 5V and pull at max 20W with all of the 
peripherals attached, we believe that the reason the 
computer kept shutting off was that the regulator that we 
bought wasn’t able to provide the necessary amperage 
quickly enough when the computationally intensive object 
recognition started. The use of lab equipment such as an 
oscilloscope would have assisted us in helping to diagnose 
this as the certain cause. As it is, it seems to us that the 

regulators that we used either weren’t properly rated or 
were not stable enough when a large amount of power is 
suddenly needed. If we had additional time, we would 
have ordered or designed another regulator that hopefully 
would provide enough current fast enough. 

E.  Distance Estimation 

The initial plan for our distance estimation node was to 
use the bounding box from the vision algorithm and line 
that up with the depth image to determine the distance to 
each obstacle. However, due to time constraints that 
occurred partially due to the pandemic, we were unable to 
implement this node. Instead, we used object detection to 
determine if the drone was close enough to the obstacle to 
perform a maneuver. This was able to be done because 
instead of the large number of obstacles that could be in 
our field of view at the same time in the originally planned 
obstacle course, the drone only ever needed to navigate a 
single obstacle at a time. 

F.  Manual and Autonomous Flight 

We were able to control the drone manually via an RC 
controller and achieve stable flight. With all the 
components attached to the drone, the drone had no 
problem sustaining lift. 

Before implementing autonomous flight, we needed to 
ensure that the flight controller was able to hold the drone 
at a constant height and position. This position hold mode 
is crucial to autonomous flight as it holds the drone in a 
stationary position in a 3D plane. We first attempted to 
utilize a PX4Flow Optical Flow sensor to implement this 
feature. The optical flow camera would send data to the 
flight controller about how much the pixels in the frame of 
the camera have shifted. However, we found that the 
drone would drift in the air and occasionally drop out of 
the sky as it poorly attempted to correct itself. After doing 
considerable testing, we found that the PX4Flow was 
providing severely incorrect data to the flight controller, 
which we believed to be causing our issues. We believed 
initially that the issue could be due to the fact that this was 
not a new PX4Flow and was instead used in a previous 
drone project.  

Next, we replaced the PX4Flow sensor with a HereFlow 
Optical Flow/Lidar sensor. Sensor was designed to 
provide the same basic functionality as the PX4Flow, but 
instead of a sonar sensor attached to determine height, a 
LiDAR sensor was used. Through testing, we found that 
the HereFlow appeared to give more accurate data than the 
PX4FLow, but the flight controller was still unable to 
properly hold position.  

We believe there are two potential reasons for why this 
problem continues to occur. First, the drone was primarily 
being flown over the grass. It is possible that the grass that 
we were flying the drone above was simply too noisy to 



accurately track movement using the camera. Our project 
was originally intended to be flown indoors, and it is 
possible that a more consistent floor pattern may have 
improved the performance of position hold. The second 
could be an issue with the accuracy of the height sensor. 
The height sensor is essential to determining how much a 
drone needs to adjust compared as pixels will appear to 
move faster when close to ground while the pixels appear 
to move slower when farther from the ground even when 
moving at the same speed. The LiDAR found on the 
HereFlow likely wasn’t working as well outside in the 
open field as it was when we were testing it indoors. We 
initially believed that the degradation in performance 
wouldn’t be significant enough at the heights we were 
flying at, but it may have been enough to cause issues. 
Although we had enough money remaining in our budget 
to order a replacement flight controller, the pandemic 
made it impossible to order and receive parts during the 
second half of the semester. 

Without the ability for a drone to properly stabilize in 
the air, we felt uncomfortable running an autonomous 
flight algorithm. The autonomous algorithm that we 
intended to employ relied on fairly consistent stabilization 
by the drone to ensure that the drone would not drift 
significantly while carrying out movement commands 
based on the local coordinate system of the flight 
controller. Without the assurance of stable flight, flying 
via our autonomous algorithm posed both a risk to 
ourselves and to the hardware as a whole. Additionally, 
our drone power system was unable to support the power 
requirements of the Jetson Nano Dev Board, making 
testing navigation difficult while performing flight.  

VII. CONSIDERATIONS FOR THE FUTURE 

A major realization that the team had when working on 
this project was how much power the Jetson Nano seemed 
to consume. This not only reduced the operating time of 
the drone, but also gave us unreliable performance when 
CPU utilization spiked. The Raspberry Pi 4 Model B 
weights approximately 100 grams less by itself, does not 
require an external Wi-Fi dongle, and most importantly, 
has a power consumption of 5W (opposed to 10W on the 
Jetson Nano). We believe that the Raspberry Pi 4B would 
have sufficiently been able to run our object detection 
model, while reducing power draw and saving weight on 
the drone. Having the ability to use lab equipment to 
analyze the power draw would have provided insights as 
to why our power delivery was unsustainable. This may 
also allow us to sustain a minimum 10 minute operating 
time instead of the 6-7 minutes we estimated with the 
selected battery. 

 

VIII. CONCLUSION 

This project was able to demonstrate a competent 
design for an autonomous drone. It produced a successful 
custom object detection model to identify the provided 
obstacles. Although we were severely hindered in our 
ability to deliver a finished product due to the global 
pandemic, this project laid the framework to incorporate 
environmental information in an autonomous device. 
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