

Autonomous Aerial Drone with
Infrared Depth Tracking

Rishi Jain, Caleb Jones, Ryan Lucas, and Hamza
Siddiqui

DEPT. OF ELECTRICAL AND COMPUTER
ENGINEERING, UNIVERSITY OF
CENTRAL FLORIDA, ORLANDO,

FLORIDA, 32816-2450

ABSTRACT — Autonomous drones have broad applications
including but not limited to: defense, search and rescue,
firefighting, and package delivery. Despite the different
applications that these drones may perform, they have
similar underlying components and software architectures.
This paper provides an overview on the processes and
methodologies used to implement an autonomous aerial
drone, also known as a UAV, for our senior design project.
This project identifies known obstacles and attempts to
maneuver around them in specific patterns. Moreover, the
project incorporates sound localization in order to identify
the approximate location of an audio source.
Index Terms — Aircraft Navigation, Autonomous Systems,
Image Recognition, Machine Learning, Sensor Systems.

I. INTRODUCTION

The purpose of this project is to create an autonomous
aerial drone in a multidisciplinary team composed of
electrical/computer engineering students as well as
mechanical/aerospace engineering students. The original
objectives of this project were provided by our project
sponsor, Lockheed Martin. The main objective was to
create an autonomous drone to navigate through an
obstacle course consisting of a ring, a pylon, a double-
pylon, and an acoustic waypoint.. This obstacle course
would have been set up indoors at Lockheed’s indoor lab.
Our team’s drone’s would have competed against other
drones designed by other teams to determine which drone
could navigate the most obstacles autonomously through
the course. In addition to navigating the obstacles, the
drone was also to avoid being brought down by a drone
“mine” designed by another team to stop the drone from
completing the course. The demonstration was initially
planned to be a competition against the other drone teams,
with the goal of accumulating the most points. As a part of
this challenge, we were allocated a strict budget of $1100
for the final build price of our drone and an additional
$550 for prototyping.

After the pandemic broke out and it was determined the
drone competition was not going to occur as planned, the
project requirements were reduced to demonstrating
autonomous around two of the obstacles: a ring and a
pylon. This report details our progress to accomplishing
these requirements.

II. HARDWARE COMPONENTS

The completed drone project consists of various
individual components used to realize the finished
product. This section provides an overview on the major
components selected, including a brief analysis on the
decision making process.

A. Flight Controller

The flight controller is responsible for controlling the
movement of the drone by adjusting the power delivered
to each motor. Flight controllers can measure the level and
speed of the drone, and use that information to correct the
orientation of the drone during flight. The selected flight
controller for this project is the Readytosky Pixhawk. The
reason why this flight controller was selected was because
in addition to the basic gyroscope and accelerometer
sensors that all flight controllers have, this one also
includes a barometer, magnetometer, and inertial
measurement unit (IMU) which provides more accurate
and consistent flight performance. Additionally, the
Pixhawk is 32-bit, has I2C and SPI interfaces, and has the
ability to run either the PX4 or ArduPilot flight stack. We
utilized the expandability of this platform to test the drone
using both a PX4Flow Optical Flow Sensor and a
HereFlow Optical Flow/Lidar sensor.

B. Camera

For our camera, we were looking at a few different
options. One option was to use a single, basic RGB
camera. This would provide us video data from which we
could feed into an object detection algorithm in which to
determine the location of the objects. However, we
determined with this kind of set up it would be difficult to
determine the distance to most objects. A solution that we
came up with was to use two RGB cameras and use the
relative difference in pixels between the two images to
determine the distance to objects on the computer. The
downside to this approach is the large amount of
processing power it would take to determine distances on
a computer that is already running an computationally
expensive object detection algorithm.

Therefore, instead of using two RGB cameras, we
decided to use an Intel Realsense D435 depth camera.
This camera uses two infrared cameras to produce a depth
image that is calculated on a processor located in the
camera. The depth image along with an RGB image from

an RGB camera also located on the D435 is sent to the
drone computer via USB. The drone computer then uses
the RGB image for object recognition while the depth
image was intended to be used for determining the
distance to the object. Figure 1 shows a 3D mapped image
processed by the camera.

Figure 1: 3D mapped image of pylons and rings viewed

from the positive z-axis

C. Microphone

To detect the acoustic waypoint we utilized the Mic
Array v2.0, which uses four ST MP34DT01TR-M digital
microphones to triangulate sound and filter out different
sounds into up to six channels. Sound triangulation is done
with time of arrival for a sound to each of the four
microphones, resulting in an angle which can be used to
determine the location of the acoustic waypoint. Volume
intensity can be used to determine the distance from the
drone to the acoustic waypoint.

Sound filtering is done with the onboard XMOS XVF-
3000 chip, with the use of Acoustic Echo Cancelation
(AEC) which is designed to remove echoes, reverberation,
and unwanted added. AEC utilizes an adaptive filter
which samples the direct audio with the echoed audio to
result in one clean audio reading, which is then further
filtered with residual echo suppression and noise reduction
(Figure 2).

The onboard XMOS XVF-3000 chip also has a
configuration file which allows for adjusted parameters
for how many channels that can be filtered, as well as the
frequency range that will be recorded by the microphones.
These parameters can be adjusted because the Mic Array
v2.0 utilizes digital microphones which are compatible
with a more advanced stereo sound processor codec such
as the XMOS.

Figure 2: Microphone array acoustic echo cancelation

D. Companion Computer

The computer of the drone is used to control the main
functions of the drone. These functions include image
recognition on frames received from the camera, sending
commands to the flight controller, and sending video to
the ground station. When choosing a computer to integrate
into our system, we were looking for a computer that was
powerful enough to run all of these systems
simultaneously in addition to being relatively light and
consuming relatively little power.

At first we considered using a Raspberry Pi 4 Model B.
This computer has a 4-core 1.5 GHz processor with 4GB
of memory. It is very light at 46 grams and uses up to 5W
at max power. However, this computer had the downsides
of having a GPU that is not well documented, likely not
very powerful, and unable to take advantage of specific
libraries designed for object detection models.

We instead decided to use a Nvidia Jetson Nano Dev
Kit. This computer has a 4-core 1.42GHz processor with
4GB of memory. It is slightly heavier at 116 grams and
uses up to 10W at max power, but it uses an Nvidia
CUDA core GPU that is more broadly compatible with
software that can run object detection algorithms. We
believed this combination of CPU and GPU would
provide enough computational power to run the object
detection algorithm along with any other software we
were running. We would also be able to experiment with
Nvidia specific libraries for deep learning and computer
vision. For this reason, we selected the Jetson Nano over
the Raspberry Pi 4B.

E. Microcontroller

A microcontroller was selected to manage four laterally
mounted ultrasonic range sensors, the HC-SR04. Utilizing
a separate microcontroller (as opposed to incorporating
this subsystem with the companion computer) allowed us
to increase the modularity of the system. This highly
modular design allowed us to increase the reliability of the
subsystem, and allowed us to easily examine various
design iterations. The chosen architecture was based on
the Atmel ATMEGA328-PU processor which utilizes an

8-bit 20 MHz design. This integrated circuit (IC) is
sufficient in driving the ultrasonic range sensors and
relaying distance information to the companion computer
via UART. Finally, this architecture was chosen due to its
available documentation/online resources, as well as ease
of use via the Arduino development platform.

F. Wi-Fi Module

The drone computer requires Wi-Fi capability in order
to communicate with a ground control computer to send
video data. The Jetson Nano does not come with a Wi-Fi
module built in, so we decided to buy a Geekworm USB
Wi-Fi adapter. We decided to go with a USB Wi-Fi
module rather than a Wi-Fi card because a Wi-Fi card
would have required installation of a separate antenna in
order to operate properly. The USB module came with a
small antenna and allowed for quicker integration with the
rest of the system.

The Geekworm USB Wi-Fi module was specifically
chosen because it uses USB 3.0 which is on the Jetson
Nano, allowing for data speed of up to 4,800 Mbps, which
is ten times faster than USB 2.0 ports. A USB Wi-Fi
module with a larger antenna allows for a larger reception
range, and the Geekworm USB Wi-Fi module uses a 5dBi
RP-SMA which has an effective range of up to 1000 feet.

G. Battery

 A Lithium Polymer (LiPo) battery will be used as the
power source for the drone. It will be connected to the
power distribution board (PDB), which will then distribute
power to the rest of the components. The power
requirements of all the components of the drone’s system
is listed in Table 1..

Table 1: Expected Power Draw of System Components

 The battery used was a “Venom Fly” 14.8 volt, 3200
mAh, 4 cell, 330g LiPo battery. The battery was chosen
based on two primary specifications; its total output
voltage and weight.

 The “Dynamite Reaction” and the Tattu batteries were
taken into consideration. The “Dynamite Reaction” was a
5000 mAh, 11.1 volt, 3 cell, 204g battery; this battery’s
higher capacity and lighter weight were good
specifications to consider. However, the output voltage of

the battery was too low to provide adequate power of the
drone’s systems.

 The “Tattu” was a 10000 mAh, 22.2 volt, 6 cell, 1400g
battery; this battery’s higher capacity and output voltage
were good specifications to consider. However, the total
weight of the battery was too high to provide adequate
thrust for the drone’s takeoff of maneuverability.

H. Universal Battery Eliminator Circuit

 To power the Jetson Nano using power from the drone’s
power distribution board, the ZTW 6Amp universal
battery eliminator circuit (UBEC) was used. The Jetson
Nano is rated to take a DC power supply of 5V and
4Amps, and despite providing 5V and 5.5Amps via the
ZTW 6Amp UBEC, it did not provide an adequate amount
of power when the Jetson was running the computer
vision algorithm, resulting in a shutdown of the CPU.

III. System Overview

This section will outline the physical connectivity and
operation of the complete system.

A. Architecture

Figure 3 below provides a high level overview of how
the components are connected in this project. In the figure,
it can be seen the battery is connected to PDB, which is
connected to the ESC and motor set, the flight controller,
the CPU, the camera, the microphone, and the
microcontroller and sensor set.

Figure 3: System component connection overview

As seen above, the drone has two primary systems: the

flight controller and the Jetson Nano (companion
computer). The flight controller manages all the flight
controls of the drone, while the companion computer
manages all the image and sound recognition, processing,
and navigation instructions of the drone. The companion
computer connects to the flight controller in place of a
radio receiver, mimicking the signals used to fly a drone.
It also provides the communication interface to control the

drone remotely. As the Jetson Nano is able to connect to a
Wi-Fi network through the wireless adapter, a user is able
to SSH into the drone and execute flight commands.
Moreover, the user is able to launch the video feed and
stream it over the network to a remote ground control
station (in this case, a laptop).

B. Operation

Connecting the battery to the drone powers all of the
system components immediately, however the computer
takes about 45 seconds to boot up. Once the computer has
booted, and the Jetson Nano connects to the known access
point, a user can remotely SSH into the computer over the
same network. Once logged in via SSH, the user can
launch the software for autonomous functionality. To
manually fly the drone, the remote control receiver must
be inserted into the flight controller, replacing the Jetson
Nano.

IV. SOFTWARE DESIGN AND INTEGRATION

The software for the project heavily revolves around the
Robot Operating System (ROS). Figure 4 (below) outlines
how the various software nodes interact with one another.

Figure 4: Software system diagram using ROS

A. Object Detection Model and Training

Object detection is used in our system to determine the
location of obstacles compared to the drone. The decision
of the type of model mainly focused on speed as extreme
accuracy is not necessary to navigate through hoops and
around pylons. Using data for models running on the
Jetson Nano [4], we decided to go with a Single Shot
Detector (SSD) using a Mobilenet V2 to identify objects

for its speed. It would allow us to perform path corrections
at a rate at at least 30 frames per second.

This model was trained using one of our personal
computers with a GTX 980ti GPU using Tensorflow.
Tensorflow was chosen due to its theoretical compatibility
with the Jetson hardware. The images used for training
were collected by us during our test sessions in the
Lockheed Martin drone lab and outside, and these images
were labeled using labelImg [1]. The configuration of our
training was based on that Tensorflow researchers used for
training an SSD for the COCO dataset [2].

Once the model was trained, the frozen model was
transferred to the Jetson where the model was converted
into a UFF file, a form usable by TensorRT. TensorRT
was then used to optimize the model for use with the GPU
located on the Jetson Nano. This process was difficult due
to issues in compatibility between particular versions of
Tensorflow and TensorRT. In this case, Tensorflow 14.0
was creating nodes in the graph that were unable to be
properly interpreted by our version of TensorRT. We were
able to resolve these issues after finding a source detailing
how these issues could be resolved [3].

B. Robot Operating System

The Robot Operating System (ROS) is a set of message
passing protocols typically used with autonomous
systems. ROS allows for integration of different systems
by standardizing messages including the passing of
images from the camera node to the image processing
node. Nodes can be established for various functions such
as packaging sensor data and device control instructions.

We decided to go with ROS because of the large
amount of resources that we could find a large amount of
software that would allow for the quick integration of
various components of our system.

C. Controller Node

The controller node is a ROS node designed to receive
information from the object detection node and use that
information to send commands to the flight controller via
MAVROS. The controller node contains a control loop
that switches between a set of modes. The main two
modes are Autonomous Navigation (AutoNav) and
Autonomous Maneuver (AutoMan).

While in AutoNav mode, the drone would attempt to
navigate towards a spot in front of the obstacle. The drone
does this using object data from the object detection node.
Once the drone has navigated to a spot in front of the
obstacle, the drone then switches into AutoMan mode.
The drone then would attempt to navigate around the
obstacle. In the case of rings, the drone would attempt to
fly through them. In the case of pylons, the drone would
make a loop around them. Once the drone has finished

AutoMan mode, the drone would be put into AutoNav
mode again to look for another obstacle.

The drone would be able to be switched out of AutoNav
and AutoMan modes by flicking a switch on the radio
controller to throw the flight controller into a human
operated mode. The drone computer will then notice the
change in mode and stop sending commands to the flight
controller.

D. Camera Node

The camera node we are using to interface with the Intel
Realsense D435 is a node called realsense-ros created by
Intel [5]. This node provides an RGB image and a depth
image to the other nodes.

E. Object Detection Node

The object detection ROS node is created by Nvidia
employees called ros_deep_learning [5] that was edited by
us in order to accept an RGB image from the camera as
opposed to the BGR image that the program expects. The
object detection node subscribes to the RGB image output
by camera node. The node then takes our custom model in
UFF format, converts it to a form to be used by TensorRT
(if it hasn’t already from a previous run), and then uses
that model to output bounding boxes of obstacles. These
bounding boxes are labeled such that we can determine
what kind of obstacle is detected. These bounding boxes
would have been passed to the distance estimation node
for use in determining distances to each object.

F. Distance Estimation Node

The distance estimation ROS node would take an input
of a depth image from the camera node and the bounding
boxes of objects from the object detection node to
estimate the distance to each obstacle in the field of view
of the camera. The closest obstacle to the drone is then
determined, and the bounding box for that obstacle and
distance to that obstacle would then have been passed to
the drone controller node for navigation.

G. Microcontroller Software

The microcontroller software was written in embedded
C, as available in the Arduino Integrated Development
Environment. The microcontroller transmits sensor
information over the Universal Asynchronous Receiver-
Transmitter (UART) interface. On the other side of the
communication link, a ROS node on the companion
computer can read the serial communication and publish
the data as necessary.

V. DRONE DESIGN

The drone was customly designed by the
mechanical/aerospace engineering members of our team
with the purpose of creating a highly modular design. The
benefit to creating our own frame is that it can evolve to
meet the changing needs of our project. Designing our
own drone was also cost effective and allowed the team to
utilize the project budget on better components. In
particular, the drone was 3D printed using PET-G with
custom mounts to securely house our components. We
were able to quickly reprint parts of the drone if we
needed to accomodate a new component or replace any
broken parts. A model of drone is shown below in Figure
5:

Figure 5: Custom design drone frame with components

mounted

VI. RESULTS

Due to the pandemic canceling the trial runs at
Lockheed Martin’s drone facility, the school being shut
down and denying access to the senior design lab, and
generally being unable to congregate with the entire team
due to stay-at-home orders, the ability to complete this
project as originally planned was severely impacted. We
did our best to pull together what we could in these
circumstances.

A. Object Detection

We were able to train an object recognition model and
successfully execute it on the drone’s onboard computer.
We created and utilized a database of approximately eight
hundred images to create our model. We were able to
correctly identify hoops and pylons. An example of this
can be seen in Figure 6. As part of the project
requirements, the object recognition system should be able
to identify the type of obstacle detected, and the
confidence level of the object detected, amongst other
requirements. In figure 6, it can be seen the object
recognition model was able to detect two types of
obstacles; a ring and a single pylon. The ring was detected

with a confidence level of 83 percent, and the pylon was
detected with a confidence level of 75.7 percent.

Figure 6: Object detection with confidence level

In addition to the visual identification, we were able to
extract numerical coordinates for the identified object with
respect to the rest of the captured frame.

B. Sound Triangulation

Using the previously mentioned microphone array, we
were able to identify the direction that a sound was
playing from. Primarily, we were able to extract the angles
of a sound source in reference to the zero position of the
microphone. With this information, we could determine
which direction the drone needed to navigate to in order to
complete the acoustic waypoint obstacle as part of the
competition. An example of the microphone data is shown
in Figure 7. In the figure, the angle of the sound source
from the drone’s current location can be seen. The angle is
measured counterclockwise, taken from the horizontal
front end of the drone.

The sound that the microphones were set to listen to any
sound above 180Hz. The XMOS could limit its sound
cutoff range to 80Hz, 125Hz, and 180Hz. This was the
closest number to Lockheed’s specification of close to
500Hz for the sound emitted from the acoustic waypoint.
The 180Hz limit was enough to permit sounds from a high
frequency hand bell, and exclude lower frequency sounds
such as voices when testing for the direction of arrival for
high frequency sounds. The frequency of the sound from
the drone’s propellers to where the mic array was placed
underneath the drone, was below the 180Hz threshold.

Figure 7: Angles of detected sound samples (with respect

to a 0° starting position)

C. Printed Circuit Board & Microcontroller

We were able to design and prototype the PCB that
would be able to manage the ultrasonic range sensors used
for the measurements between the drone and potential
obstacles. It is based on the Atmel ATMEGA328-PU
integrated circuit and an Arduino Uno was used as the
development board. While we originally wanted to
incorporate a DC/DC power converter to serve as a
voltage regulator for the various components in our
system, the electronic speed controllers and motors draw
upwards of 30A each. We were advised to instead use a
power distribution board designed for drone applications,
which we then utilized to power our components. The
schematic for our circuit is shown in Figure 8.

Figure 8: PCB schematic utilizing the Atmel

ATMEGA328-PU

We tested the sensor measurements and verified the

ability to communicate data between the microcontroller
and Jetson Nano over UART to exchange data, as seen in
Figure 9.

Though we were able to establish a proof of concept for
this subsystem, we experienced unreliable performance

when using the fabricated PCB that we designed. We
believe that due to tracing errors, some signals were
interfering with each other and causing poor performance
in relaying information back to the drone’s companion
computer. We would be able to confirm this hypothesis
with the use of the university’s lab equipment.

Figure 9: UART transmission of ultrasonic sensor data

(measured in centimeters)

D. Power System

All of the drone’s components were powered through
the onboard battery. The drone was originally designed to
fly for at least 10 minutes on a full charge of a battery.
However, during testing we discovered that our battery
was only able to provide about 6 minutes of flight with all
components attached. After discussions with our team, we
discovered that the power draw from our motors was
greater than that was what was expected. We decided to
upgrade our battery to a 6000mAh, which is almost double
what we had before. We also decided to upgrade to larger
motors because the additional battery weight would have
put significant strain on our current motors. However, we
were unable to order these batteries due to the lack of
access to sponsor funds because of the pandemic.

During our testing with our drone computer connected
to the battery, we noticed that we were having issues with
the computer turning off automatically. When the drone
was idle, we found that each component was stable and
remained powered on. However, when we ran the
computer vision algorithm, the CPU load would spike and
the computer would shut off shortly thereafter. The power
to the computer was being routed from the computer using
a regulator rated for 5V at 6A. Since the computer is
designed to run at 5V and pull at max 20W with all of the
peripherals attached, we believe that the reason the
computer kept shutting off was that the regulator that we
bought wasn’t able to provide the necessary amperage
quickly enough when the computationally intensive object
recognition started. The use of lab equipment such as an
oscilloscope would have assisted us in helping to diagnose
this as the certain cause. As it is, it seems to us that the

regulators that we used either weren’t properly rated or
were not stable enough when a large amount of power is
suddenly needed. If we had additional time, we would
have ordered or designed another regulator that hopefully
would provide enough current fast enough.

E. Distance Estimation

The initial plan for our distance estimation node was to
use the bounding box from the vision algorithm and line
that up with the depth image to determine the distance to
each obstacle. However, due to time constraints that
occurred partially due to the pandemic, we were unable to
implement this node. Instead, we used object detection to
determine if the drone was close enough to the obstacle to
perform a maneuver. This was able to be done because
instead of the large number of obstacles that could be in
our field of view at the same time in the originally planned
obstacle course, the drone only ever needed to navigate a
single obstacle at a time.

F. Manual and Autonomous Flight

We were able to control the drone manually via an RC
controller and achieve stable flight. With all the
components attached to the drone, the drone had no
problem sustaining lift.

Before implementing autonomous flight, we needed to
ensure that the flight controller was able to hold the drone
at a constant height and position. This position hold mode
is crucial to autonomous flight as it holds the drone in a
stationary position in a 3D plane. We first attempted to
utilize a PX4Flow Optical Flow sensor to implement this
feature. The optical flow camera would send data to the
flight controller about how much the pixels in the frame of
the camera have shifted. However, we found that the
drone would drift in the air and occasionally drop out of
the sky as it poorly attempted to correct itself. After doing
considerable testing, we found that the PX4Flow was
providing severely incorrect data to the flight controller,
which we believed to be causing our issues. We believed
initially that the issue could be due to the fact that this was
not a new PX4Flow and was instead used in a previous
drone project.

Next, we replaced the PX4Flow sensor with a HereFlow
Optical Flow/Lidar sensor. Sensor was designed to
provide the same basic functionality as the PX4Flow, but
instead of a sonar sensor attached to determine height, a
LiDAR sensor was used. Through testing, we found that
the HereFlow appeared to give more accurate data than the
PX4FLow, but the flight controller was still unable to
properly hold position.

We believe there are two potential reasons for why this
problem continues to occur. First, the drone was primarily
being flown over the grass. It is possible that the grass that
we were flying the drone above was simply too noisy to

accurately track movement using the camera. Our project
was originally intended to be flown indoors, and it is
possible that a more consistent floor pattern may have
improved the performance of position hold. The second
could be an issue with the accuracy of the height sensor.
The height sensor is essential to determining how much a
drone needs to adjust compared as pixels will appear to
move faster when close to ground while the pixels appear
to move slower when farther from the ground even when
moving at the same speed. The LiDAR found on the
HereFlow likely wasn’t working as well outside in the
open field as it was when we were testing it indoors. We
initially believed that the degradation in performance
wouldn’t be significant enough at the heights we were
flying at, but it may have been enough to cause issues.
Although we had enough money remaining in our budget
to order a replacement flight controller, the pandemic
made it impossible to order and receive parts during the
second half of the semester.

Without the ability for a drone to properly stabilize in
the air, we felt uncomfortable running an autonomous
flight algorithm. The autonomous algorithm that we
intended to employ relied on fairly consistent stabilization
by the drone to ensure that the drone would not drift
significantly while carrying out movement commands
based on the local coordinate system of the flight
controller. Without the assurance of stable flight, flying
via our autonomous algorithm posed both a risk to
ourselves and to the hardware as a whole. Additionally,
our drone power system was unable to support the power
requirements of the Jetson Nano Dev Board, making
testing navigation difficult while performing flight.

VII. CONSIDERATIONS FOR THE FUTURE

A major realization that the team had when working on
this project was how much power the Jetson Nano seemed
to consume. This not only reduced the operating time of
the drone, but also gave us unreliable performance when
CPU utilization spiked. The Raspberry Pi 4 Model B
weights approximately 100 grams less by itself, does not
require an external Wi-Fi dongle, and most importantly,
has a power consumption of 5W (opposed to 10W on the
Jetson Nano). We believe that the Raspberry Pi 4B would
have sufficiently been able to run our object detection
model, while reducing power draw and saving weight on
the drone. Having the ability to use lab equipment to
analyze the power draw would have provided insights as
to why our power delivery was unsustainable. This may
also allow us to sustain a minimum 10 minute operating
time instead of the 6-7 minutes we estimated with the
selected battery.

VIII. CONCLUSION

This project was able to demonstrate a competent
design for an autonomous drone. It produced a successful
custom object detection model to identify the provided
obstacles. Although we were severely hindered in our
ability to deliver a finished product due to the global
pandemic, this project laid the framework to incorporate
environmental information in an autonomous device.

ACKNOWLEDGEMENT

We would like to thank Lockheed Martin in Orlando,
Florida for sponsoring this project. In particular, we would
like to thank Aaron Phu from Lockheed Martin and
George Loubimov from the Aerospace Engineering
department at the university for their time and guidance.
We would also like to thank our ECE senior design
professor, Dr. Richie.

REFERENCES

[1] Tzutalin. LabelImg. Git code (2015).
https://github.com/tzutalin/labelImg

[2] "Speed/accuracy trade-offs for modern convolutional object
detectors." Huang J, Rathod V, Sun C, Zhu M, Korattikara
A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S,
Murphy K, CVPR 2017.
https://github.com/tensorflow/models/blob/master/research/
object_detection/samples/configs/ssd_mobilenet_v2_coco.c
onfig

[3] Bédorf, Jeroen. “Deploying SSD mobileNet V2 on the
NVIDIA Jetson and Nano platforms.” Dec 13, 2019.
https://www.minds.ai/post/deploying-ssd-mobilenet-v2-on-
the-nvidia-jetson-and-nano-platforms

[4] “Jetson Nano: Deep Learning Inference Benchmarks.”
Nvidia. https://developer.nvidia.com/embedded/jetson-
nano-dl-inference-benchmark

[5] “ROS Wrapper for Intel® RealSense™ Devices.”
IntelRealSense. Git code (2020). Licensed under Apache
License V2.0 (http://www.apache.org/licenses/LICENSE-
2.0). https://github.com/IntelRealSense/realsense-ros

[6] Franklin, Dustin. “ros_deep_learning.” Git code
(2020). https://github.com/dusty-
nv/ros_deep_learning

